

Getting Started Guide

	1. Introduction

	2. System Requirements
	2.1. Setup Tester Environment

	2.2. Setup Target Environment

	2.3. Authorized login session

	3. Configuring DPDK Test Suite
	3.1. DPDK Test Suite command line

	3.2. DPDK Release Preparation

	3.3. Create your own execution configuration

	3.4. Launch DPDK Test Suite

	4. Review Test Result
	4.1. Browse the result files

	4.2. Check test result of DPDK Test Suite

	4.3. Generate PDF doc from RST

	5. Tutorial
	5.1. Functional Test Tutorial

	5.2. Performance Test Tutorial

	6. Virtualization Framework
	6.1. Design Concept

	6.2. System Requirements

	6.3. Suite Programing

	6.4. KVM Module

	7. Virtualization Scenario
	7.1. Configuration File

	7.2. Scenario Parameters

	8. Multiple Virtual Machines Management
	8.1. Command arguments

	8.2. Sample Code

1. Introduction

This document describes how to install and configure the Data Plane Development Kit Test Suite (DPDK Test Suite) in a Linux environment. Users can refer this document to enable this test infrastructure in their environment and don’t need go deeply with too much details about this framework.
DPDK Test Suite is an automation test tool for DPDK software, a python-base library. It can run on the tester machine, and communicate/manage DUT by SSH connection. DTF supports different kind of traffic generators, including DPDK-based PacketGen, third-party professional tester equipment (IXIA®).
Data Plane Development Kit Test Suite (DPDK Test Suite) includes one set of test cases and DPDK generic test framework. DPDK Test Suite provides test example, references and framework for open source community. Based on DPDK Test Suite, everyone can develop their test plan, automation script and configuration for own features and platform. In addition, DPDK Test Suite provides a solution to allow that DPDK developers contribute their function test to certify their patch integration. It only requires limited effort to maintain test cases once merged into DPDK Test Suite. Everyone can utilize DPDK Test Suite to measure performance and functionality for features.

Please see DPDK Test Suite architecture in the following figures:

[image: _images/dts_soft_arch.png]

As generic test framework, DPDK Test Suite provides the following functions:

	Able to work with DUT (Device Under Test), which installed Fedora, Ubuntu, WindRiver, FreeBSD, RedHat and SUSE.

	Support virtualization hypervisors like Xen and Qemu.

	Support both software and hardware traffic generators, including Scapy, DPDK-based PacketGen and IXIA traffic generator, even third party packet generator via TCL or Python library.

	Provide configure files to customize test suite and test cases to run under DUT.

	Provide debug and log functionalities for tracking test cases execution process.

	Support to output test result by excel, log text file, etc.

	DPDK Test Suite provides one set of basic library to manage tester, DUT, test case, exception, generate report, and configure test plan by user configure files. It’s easy to develop user-defined test suite and test plan by self, and these test cases are able to integrate into DPDK Test Suite.

	With this test framework, user can automatically identify network topology, and easy to configure/deploy environment for DUT and tester, and provides flexibility to scale test capability by configuration.

DPDK Test Suite environment includes DUT (Device under Test), Tester and packet generator. DPDK software will deployed and run on DUT. DPDK Test Suite should run on the Tester.

Please see architecture in the following figures:

[image: _images/dts_network_arch.png]

This architecture provides automatically mechanism to manage tester, DUT and packet generators, and remove dependency between test script and test environment/hardware. It defines one abstraction layer for DPDK Test Suite, and provides extensibility to add more test script.
In the DPDK Test Suite Test Framework, it provides the following modules to help to manage device, platform, configure and test results.

Beside Framework tool, DPDK Test Suite also defines one set of test cases. It includes basic test suite to verify basic functionality of DPDK library. These test script provides example and reference. Everyone can develop their test cases, verify their features functionality, and commit generic test report to maintainer. However, user-defined test cases, test plans and scripts must follow DPDK Test Suite standard including code standard, naming conventions, configure format, rst test plan, API.

Please see test cases, which are included in the DPDK compliance test suites:

	Test Suite

	Descriptions

	Command line

	Define a demo example of command line interface in RTE

	hello_world

	Print a helloworld message on every enabled logic core.

	Multi process

	Demonstrates the basics of sharing information between DPDK processes.

	Timer

	Shows how timer can be used in a RTE application.

	Blacklist/WhiteList

	Tests Whitelist/Blacklist Features by Poll Mode Drivers.

	checksum_offload

	Tests RX/TX L3/L4 Checksum offload features by Poll Mode Drivers

	jumbo_frame

	Tests jumbo frames features by Poll Mode Drivers

	testpmd

	Provides benchmark tests for the Intel Ethernet Controller (Niantic) Poll Mode Driver.

	l2fwd

	Provides a basic packet processing application using DPDK. It is a layer-2 (L2) forwarding application which takes traffic from a single RX port and transmits it with few modification on a single TX port.

	L3fwd

	Verifies Layer-3 Forwarding results using l3fwd application.

	IP fragment

	Verifies IPv4 fragmentation using ipv4_frag application.

	Flow direction

	Verifies the Flow Director feature of the Intel 82599 10GbE Ethernet Controller

	link_flowctrl

	Verifies Ethernet Link Flow Control Features by Poll Mode Drivers

	ieee1588

	Tests the IEEE1588 Precise Time Protocol offload supported in Poll Mode Drivers.

2. System Requirements

The board assigned to be tester should be installed the latest Fedora distribution for easily installed DPDK Test Suite required python modules. Tester board needs plug at least 2 x Intel® 82599 (Niantic) NICs (2x 10GbE full duplex optical ports per NIC) in the PCI express slots, then connect these four Niantic ports to the DUT board and make sure the link has been started up and speed is 10000Mb/s.

Beside the four Niantic ports, tester and DUT should also have one interface connected to the same intranet. So that they can be accessed by each other from local IP address.

Note

Firewall should be disabled that all packets can be accepted by Niantic Interface.

systemctl disable firewalld.service

2.1. Setup Tester Environment

Note

Please install the latest Fedora distribution on the tester before install DPDK Test Suite on tester. Currently we recommend Fedora 20 for tester. The setup instruction and required packages may be different on different operation systems.

To enable tester environment, you need to install script language, tool chain and third party packet generator, etc.

Please follow the guidance to finish install as the below section.

2.1.1. SSH Service

Since DPDK Test Suite Tester communicates with DUT via SSH, please install and start sshd service in your tester.

yum install sshd # download / install ssh software
systemctl enable sshd.service # start ssh service

For create authorized login session, user needs to generate RSA authentication keys to ssh connection.

Please use the following commands:

ssh-keygen -t rsa

2.1.2. TCL Language Support modules

Since some third party tools required TCL (Tool Command Language) supports, please install TCL package to control and connect third party package generator. (For example, third-party professional tester IXIA required TCL support)

yum install tcl # download / install tcl software

2.1.3. Install Third Party python modules

With third party module, DPDK Test Suite is able to export test result as MS Excel file or graphs. To support this feature, please install the following modules in the tester.
Python Module “xlwt”: this module is used to generate spreadsheet files which compatible with MS Excel 97/2000/XP/2003 XLS files.
Python Module “numpy”: this module provides method to deal with array-processing test results.
Python Module “pexpect”: this module provides API to automate interactive SSH sessions.
Python Module “docutils”: Docutils is a modular system for processing documentation into useful formats, such as HTML, XML, and LaTeX.
Python Module “pcapy”: Pcapy is a Python extension module that interfaces with the libpcap packet capture library. Pcapy enables python scripts to capture packets on the network.
Python Module “xlrd”: Xlrd is a Python module that extracts data from Excel spreadsheets.

Please see installation instruction as the following:

yum install python-xlwt
yum install python-pexpect
yum install numpy
yum install python-docutils
yum install pcapy
yum install python-xlrd

2.1.4. Setup and configure Scapy

Scapy is a powerful interactive packet manipulation program. It is able to forge or decode packets of a wide number of protocols, send them on the wire, capture them, match requests and replies, and much more. It can easily handle most classical tasks like scanning, tracerouting, probing, unit tests, attacks or network discovery.

DTS uses python module scapy to forge or decode packets of a wide number of protocols, send them over the wire, capture them, and analyse the packets.

yum install scapy

Fedora20 default kernel will strip vlan header automatically and thus it will cause that scapy can’t detect vlan packet normally. To solve this issue, we need to configure scapy use libpcap which is a low-level network traffic monitoring tool.

vim /usr/lib/python2.7/site-packages/scapy/config.py # open configure python files
use_pcap = True # find use_pcap and set it to True

2.1.5. Install DPDK Test Suite on tester

After configure environment, we need to install DPDK Test Suite into tester. First of all, download the latest DPDK Test Suite code from remote repo.

[root@tester ~]# git clone http://dpdk.org/git/tools/dts
[root@tester ~]# cd dts
[root@tester dts]# ls
[root@tester dts]# conf dep doc dts executions framework nics output test_plans tests tools

High Precision Timer (HPET) must be enabled in the platform BIOS if the HPET is to be used. Otherwise, the Time Stamp Counter (TSC) is used by default. The user can then navigate to the HPET option. On the Crystal Forest platform BIOS, the path is:
Advanced -> PCH-IO Configuration -> High Precision Timer

The DPDK Test Suite is composed of several file and directories:

	dts: Main module of DPDK Test Suite suite

	exectution.cfg: configuration file of DPDK Test Suite suite

	framework: folder with dts framework modules

	nics: folder with different network device modules

	output: folder which contain running log files and result files

	test_plans: folder with rst files which contain the description of test case

	tests: folder with test case scripts

2.2. Setup Target Environment

This section describes how to deploy DPDK Test Suite packages into DUT target.So far, DPDK Test Suite supports the following OS on DUT:

	Fedora18/19/20/23/24/25

	Ubuntu12.04/14.04/16.04

	WindRiver 6.0/7.0

	FreeBSD 10

	RedHat 6.5/7.0/7.3

	SUSE 11

Before run DPDK Test Suite on target, we need to configure target environment, it includes BIOS setting, Network configure, compiler environment, etc.

2.2.1. BIOS setting Prerequisite

In general, enter BIOS Menu by pressing F2 while the platform is starting up.

Note

It is strongly recommended to use DPDK with the latest generation of Intel platforms and processors.

The High Precision Timer (HPET) must be enabled in the platform BIOS if the HPET is to be used. Otherwise, the Time Stamp Counter (TSC) is used by default. The user can then navigate to the HPET option. On the Crystal Forest platform BIOS, the path is:

Advanced -> PCH-IO Configuration -> High Precision Timer

Enhanced Intel SpeedStep® Technology must be disabled in the platform BIOS, to ensure the processor voltage and core frequency do not change. This is necessary for consistency of data. On the Crystal Forest platform BIOS the path is:

Advanced -> Processor Configuration -> Enhanced Intel SpeedStep

Processor state C3 and C6 must be disabled for performance measure too. On the Crystal Forest platform BIOS, the path is:

Advanced -> Processor Configuration -> Processor C3
Advanced -> Processor Configuration -> Processor C6

Hyper-Threading Technology must be enabled. On the Crystal Forest platform BIOS, the path is:

Advanced -> Processor Configuration -> Intel® Hyper-Threading Tech

If the platform BIOS has any particular performance option, select the settings for best performance.

2.2.2. DPDK running Prerequisite

Compilation of DPDK need GNU maker, gcc, libc-header, kernel header installed. For 32-bit compilation on 64-bit systems, there’re some additional packages required. For Intel® C++ Compiler (icc) additional libraries may be required. For more detail information of required packets, please refer to Data Plane Development Kit Getting Started Guide.

The DPDK igb_uio kernel module depends on traditional Linux kernel uio support to operate. Linux traditional uio support may be compiled as a module, so this module should be loaded using the modprobe program.
Kernel must support the allocation of hugepages. Hugepage support is required for the large memory pool allocation used for packet buffers. By using hugepage allocations, performance will be improved since only fewer pages are needed, and therefore less Translation Lookaside Buffers (TLBs, high speed translation caches), which reduce the time it takes to translate a virtual page address to a physical page address. Without hugepages, high TLB miss rates would occur, slowing performance.

For more detail information of system requirements, also refer to Data Plane Development Kit Getting Started Guide [http://dpdk.org/doc/guides].

2.3. Authorized login session

In DPDK Test Suite, support communication be established based on authorized ssh session. All ssh connection to each other will skip password interactive phase if remote server has been authorized.

In tester, you can use tool ssh-copy-id to save local available keys on DUT, thus create authorise login session between tester and DUT. By the same way, you can create authorise login session between tester and itself.

ssh-copy-id -i “IP of DUT”
ssh-copy-id -i “IP of tester”

In DUT, You also can use tool ssh-copy-id to save local available keys in tester, thus create authorise login session between DUT and tester.

ssh-copy-id –i “IP of Tester”

3. Configuring DPDK Test Suite

3.1. DPDK Test Suite command line

DPDK Test Suite supports multiple parameters and these parameters, which will select different of working mode of test framework. In the meantime, DPDK Test Suite can work with none parameter, then every parameter will set to its default value.
For Example, please see specific usage, you can get these information via DPDK Test Suite help messages.

usage: main.py [-h] [--config-file CONFIG_FILE] [--git GIT] [--patch PATCH]
 [--snapshot SNAPSHOT] [--output OUTPUT] [-s] [-r] [-p PROJECT]
 [--suite-dir SUITE_DIR] [-t TEST_CASES] [-d DIR] [-v]
 [--virttype VIRTTYPE] [--debug] [--debugcase] [--re_run RE_RUN]
 [--commands COMMANDS]

DPDK Test Suite supports the following parameters:

	parameter

	description

	Default Value

	-h,–help

	show this help message and exit

	

	–config-file CONFIG_FILE

	configuration file that describes the test cases,
DUTs and targets

	execution.cfg

	–git GIT

	Indicate git label to use as input

	None

	–patch PATCH

	apply a patch to the package under test

	None

	–snapshot SNAPSHOT

	snapshot .tgz file to use as input

	dep/dpdk.tar.gz

	–output OUTPUT

	Output directory where DPDK Test Suite log and
result saved

	output

	-s –skip-setup

	Skips all possible setup steps done on both DUT
and tester boards.

	

	-r

	Reads the DUT configuration from a cache. If not
specified, the DUT configuration will be
calculated as usual and cached.

	

	-p PROJECT
–project PROJECT

	Specify that which project will be tested dpdk

	

	-t TEST_CASES
[TEST_CASES …]
–test-cases
TEST_CASES
[TEST_CASES …]

	Executes only the followings test cases

	None

	-d DIR –dir DIR

	Output directory where dpdk package is extracted

	dpdk

	–suite-dir

	Test suite directory where test suites will be
imported

	tests

	-v, –verbose

	Enable verbose output, all log shown on screen

	

	–virttype

	Set virtualization hypervisor type. Support kvm
and libvirtd by now.

	

	–debug

	Enable debug mode, running process can be
interrupted and enter debug mode.

	

	–debugcase

	Enter into debug mode before running every test
case.

	

	–re_run TIMES

	Rerun failed test cases for stable result

	0

	–commands COMMANDS

	Run self assigned commands at different stages of
execution. Format is [commands]:dut|tester:pre-
init|post-init:check|ignore
E.g. [/root/setup.sh]:dut:pre-init:check

	

Please see more information about some critical parameters as the following:

–config-file

DPDK Test Suite configure file defines some critical parameters. It must contain the DUT CRB IP address, wish list of test suites, DPDK target information and test mode parameter.

–git

When we use –-git parameter, DPDK Test Suite will clone the source code from dpdk.org git repository, then checkout branch specified by the parameter.

–patch

DPDK Test Suite also support apply specified patch list by –patch parameter before build DPDK packet.

–skip-setup

If DPDK source code doesn’t changed, you can use –skip-setup to skip unzip and compilation of DPDK source code, just reuse original source code.

–project

Parameter –-project can load customized project model and do its own project initialization.

–output

If we perform multiple validation at the same time, result files in output folder maybe overwritten. Then we can use –-output parameter to specify the output folder and save execution log and result files. This option will make sure that all test result will be stored in the different excel files and rst files, doesn’t conflict each other.

Note

The current working folder of DPDK Test Suite is “DTS root directory” and default output folder is “output”

–t

You can only run some specified cases in test suites.

We can use parameter –-t to determine those cases.

–suite-dir

DPDK Test Suite support load suites from different folders, this will be helpful when there’s several projects existing in the same time.

–verbose

DPDK Test Suite support verbose mode. When enable this mode, all log messages will be output on screen and helpful for debug.

–virttype

Choose virtualization hypervisor type. By now this configuration is useless.

–debug

DPDK Test Suite support debug mode. After keyboard ctrl+c message to DTS process, will run into this mode. User can do further debug by attached to sessions or call pdb module by interact interface.

Debug interact support commands as below:

help(): show help message
list(): list all connected sessions
connect(name): connect to session directly
exit(): exit dts
quit(): quit debug mode and into normal mode
debug(): call python debug module

–debugcase

Another approach to run into debug mode. With this option on, DTS will hang and wait for user command before execution of each test case.

–re_run

Some cases may failed due to miscellaneous packets, rerun those test cases can generate the stable result.

–commands

Allow user specify some commands which can be executed on DUT or Tester in the process of DPDK Test Suite preparation.

3.2. DPDK Release Preparation

Firstly, you need to download the latest code from dpdk.org, then archive and compress it into zipped file. After that, please move this zipped file to DPDK Test Suite “dep” folder. Once launch test framework, DPDK Test Suite will copy this zipped file to root folder on DUT. Finally this source code zip file will be unzipped and built.

[root@tester dts]# ls
[root@tester dts]# conf dep doc dts executions framework nics output test_plans tests tools

If enables patch option, DPDK Test Suite will also make patch the unzipped folder and compile it.

[root@tester dts]# ./dts --patch 1.patch --patch 2.patch

3.3. Create your own execution configuration

First of all, you must create a file named execution.cfg as below.

[Execution1]
crbs=192.168.1.1
test_suites=
hello_world,
l2fwd
targets=
x86_64-default-linuxapp-gcc,
parameters=nic_type=niantic:func=true
scenario=pf_passthrough

	crbs: IP address of the DUT CRB. The detail information of this CRB is defined in file crbs.py.

	test_suites: defines list of test suites, which will plan to be executed.

	targets: list of DPDK targets to be tested.

	parameters: you can define multiple keywords

	scenario: Scenario of DPDK virtualization environment for this execution.

	– nic_typeis the type of the NIC to use. The types are defined in the file settings.py.

	There’s one special type named as cfg, which mean network information will be loaded from file.

– func=true run only functional test

– perf=true run only performance test

Then please add the detail information about your CRB in conf/crbs.conf as follows:

[192.168.1.1]
dut_ip=192.168.1.1
dut_user=root
dut_passwd=
os=linux
tester_ip=192.168.1.2
tester_passwd=
ixia_group=group1
channels=4
bypass_core0=True

	Item

	description

	dut_ip

	IP address of DUT

	dut_user

	UserName of DPDK Test Suite used to login into DUT

	dut_passwd

	Password of DPDK Test Suite used to login into DUT

	os

	Distribution of operation system

	tester_ip

	IP address of tester

	tester_passwd

	Password to login into Tester

	ixia_group

	IXIA group name for DUT

	channels

	number of memory channels for DPDK EAL

	bypass_core0

	skip the first core when initialize DPDK

If you need to configure network topology, please add it in conf/ports.cfg, e.g.:

[192.168.1.1]
ports =
 pci=0000:06:00.0,peer=0000:81:00.0;
 pci=0000:06:00.1,peer=0000:81:00.1;
 pci=0000:08:00.0,peer=IXIA:1.1;
 pci=0000:08:00.1,peer=IXIA:1.2;

	Item

	description

	pci

	Device pci address of DUT

	peer

	Device pci address of Tester port which connected
to the DUT device

3.4. Launch DPDK Test Suite

After we have prepared the zipped dpdk file and configuration file, just type the followed command “./dts”, it will start the validation process.

DPDK Test Suite will create communication sessions first.

DUT 192.168.1.1
INFO: ssh root@192.168.1.1
INFO: ssh root@192.168.1.1
INFO: ssh root@192.168.1.2
INFO: ssh root@192.168.1.2

Then copy snapshot zipped dpdk source code to DUT.

DTS_DUT_CMD: scp dep/dpdk.tar.gz root@192.168.1.1:

Collect CPU core and network device information of DUT and tester.

Automatically detect the network topology of DUT and tester.

DTS_TESTER_RESULT: DUT PORT MAP: [4, 5, 6, 7]

Build dpdk source code and then setup the running environment.

DTS_DUT_CMD: make -j install T=x86_64-native-linuxapp-gcc
DTS_DUT_CMD: awk '/Hugepagesize/ {print $2}' /proc/meminfo
DTS_DUT_CMD: awk '/HugePages_Total/ { print $2 }' /proc/meminfo
DTS_DUT_CMD: umount `awk '/hugetlbfs/ { print $2 }' /proc/mounts`
DTS_DUT_CMD: mkdir -p /mnt/huge
DTS_DUT_CMD: mount -t hugetlbfs nodev /mnt/huge
DTS_DUT_CMD: modprobe uio
DTS_DUT_CMD: rmmod -f igb_uio
DTS_DUT_CMD: insmod ./x86_64-native-linuxapp-gcc/kmod/igb_uio.ko
DTS_DUT_CMD: lsmod | grep igb_uio
DTS_DUT_CMD: usertools/dpdk_nic_bind.py --bind=igb_uio 08:00.0 08:00.1 0a:00.0 0a:00.1

Begin the validation process of test suite.

TEST SUITE : TestCmdline
 INFO: NIC : niantic
 SUITE_DUT_CMD: make -j -C examples/cmdline
 SUITE_DUT_CMD: ./examples/cmdline/build/app/cmdline -n 1 -c 0x2
 INFO: Test Case test_cmdline_sample_commands Begin

Clean-up DUT and tester after all validation finished.

 DTS_DUT_CMD: rmmod igb_uio
 DTS_DUT_CMD: modprobe igb
 DTS_DUT_CMD: modprobe ixgbe
 DTS_DUT_CMD: modprobe e1000e
 DTS_DUT_CMD: modprobe e1000
 DTS_DUT_CMD: modprobe virtio_net
DTS_TESTER_CMD: rmmod igb_uio
DTS_TESTER_CMD: modprobe igb
DTS_TESTER_CMD: modprobe ixgbe
DTS_TESTER_CMD: modprobe e1000e
DTS_TESTER_CMD: modprobe e1000
DTS_TESTER_CMD: modprobe virtio_net

4. Review Test Result

4.1. Browse the result files

After DPDK Test Suite finished the validation, we can find the result files as below in output folder. The files in output folder maybe different when change the CRB or choose different suites.

For Example, You can find the following in output folder after execution.

[root@tester output]# ls
CrownPassCRB1 dts.log statistics.txt TestHelloWorld.log test_results.xls

Please see details about these files:

	CrownPassCRB1: contains the result RST file and graph of performance data

	dts.log: Full execution log of DPDK Test Suite framework

	statstics.txt: summary statistics of DPDK Test Suite executed suites

	TestHelloWorld.log: log message of TestHelloWorld case

	test_result.xls: excel format result file

4.2. Check test result of DPDK Test Suite

You can go through the summary of execution result via statistic.txt. This file includes the number of passed test cases, the number of failed case, the number of blocked and pass ratio.

Please see example as the following. You can cat the sample file, then show this information of execution, totally executed two test cases, all cases passed the criterion and no failed or blocked cases.

[root@tester output]# cat statistics.txt
Passed = 2
Failed = 0
Blocked = 0
Pass rate = 100.0

If you need more detail information of test result, please open excel formatted file test_result.xls. This file contains of both detailed case information and case results. Also you can find description of the failure reason if DPDK Test Suite can track it.

[image: _images/dts_result.png]

If you want to track more details about the process of each suite, please go to log file which named by this suite, all related information will stored in this file.

DPDK Test Suite log module provides several levels to track event or output in log file. Every message level will have its own scopes. Separated log messages will help us get to known what happening in DPDK Test Suite and what happening in DUT and tester.

	Level

	description

	INFO

	DPDK Test Suite system level log, show start and stop process in this suite

	SUITE_DUT_CMD

	Commands send to DUT CRB

	SUITE_DUT_OUTPUT

	Output after the send the commands to DUT

	SUITE_TESTER_CMD

	Commands send to tester, most of they are Scapy commands which will send packet to DUT port

	SUITE_TESTER_OUTPUT

	Output after the send the commands to tester

Please see example for TestHelloWorld suite log as the following. This log file showed that application helloworld sent hello message from core1, and finally matched the pass criterion.

22/08/2014 11:04:45 INFO:
TEST SUITE : TestHelloWorld
22/08/2014 11:04:45 INFO: NIC : niantic
22/08/2014 11:04:45 SUITE_DUT_CMD: make -j -C examples/helloworld
22/08/2014 11:04:45 SUITE_DUT_OUTPUT: make: Entering directory `/root/dpdk/examples/helloworld'^M
 CC main.o^M
 LD helloworld^M
 INSTALL-MAP helloworld.map^M
 INSTALL-APP helloworld^M
make: Leaving directory `/root/dpdk/examples/helloworld'
22/08/2014 11:04:45 INFO: Test Case test_hello_world_single_core Begin
22/08/2014 11:04:45 SUITE_DUT_CMD: ./examples/helloworld/build/app/helloworld -n 1 -c 0x1fffffffff
22/08/2014 11:04:48 SUITE_DUT_OUTPUT: EAL: Detected lcore 0 as core 0 on socket 0^M
…
hello from core 1
22/08/2014 11:05:08 INFO: Test Case test_hello_world_single_core Result PASSED:
22/08/2014 11:05:09 SUITE_DUT_CMD: uname
22/08/2014 11:05:09 SUITE_DUT_OUTPUT:
22/08/2014 11:05:09 SUITE_TESTER_CMD: killall scapy 2>/dev/null; echo tester
22/08/2014 11:05:09 SUITE_TESTER_OUTPUT: tester
22/08/2014 11:05:10 SUITE_TESTER_CMD: uname
22/08/2014 11:05:10 SUITE_TESTER_OUTPUT:
22/08/2014 11:05:10 INFO:
TEST SUITE ENDED: TestHelloWorld

4.3. Generate PDF doc from RST

Since DPDK Test Suite stores test result as RST by default, you may be want to transfer it to PDF formatted which make it more readable. Firstly, please enter the folder which contained the RST results, then use python tool rst2pdf to convert RST. If there’s no error return, you can find the pdf file generated with same name.

[root@tester dts]# cd output/CrownPassCRB1/x86_64-native-linuxapp-gcc/Niantic
[root@tester niantic]# rst2pdf TestResult_hello_world.rst
[root@tester niantic]# ls
 TestResult_hello_world.pdf TestResult_hello_world.rst

5. Tutorial

5.1. Functional Test Tutorial

Tutorial of functional test.

5.1.1. Execution configuration

By default, DTS will load execution tasks from execution.cfg. In this file, user can assign multiple tasks to DTS. For each task, DTS will initialize dpdk environment on DUT and run test suites listed. As example below, user assigned one execution task on 127.0.0.1.

Details of the task is defined by some settings like target, NIC type, functional or performance case and foremost the list of suites which will be executed.

[127.0.0.1]
crbs=127.0.0.1
drivername=igb_uio
test_suites=
 vlan
targets=
x86_64-native-linuxapp-gcc
parameters=nic_type=cfg:func=true

5.1.2. DUT&Tester configuration

In previous chapter, we assume that user has assigned some execution task on 127.0.0.1. DTS will create the SSH connections to the DUT and tester which connected to it in the runtime. After session established, DTS will setup kernel modules and hugepages on DUT. The procedures for different OS maybe different, so type of OS is also needed to be configured by manual.

cat ./conf/crbs.cfg
[127.0.0.1]
dut_ip=127.0.0.1
dut_user=root
dut_passwd=xxx
os=linux
tester_ip=192.168.1.1
tester_passwd=xxx
ixia_group=None
channels=4
bypass_core0=True

5.1.3. Network topology configuration

By default DTS will detect network topology automatically, but in certain occasions it can’t be done like no kernel module available for latest NIC or tester’s port need special settings. For resolving those kind of problems, DTS also support manually specify ports connections. The concept is that user only need to specify PCI devices under test and peer PCI address on tester server. In below sample, we defined network topology that DUT pci device (18:00.0) connected to pci device (1b:00.0) on 192.168.1.1.

cat ./conf/ports.cfg
[127.0.0.1]
ports =
 pci=0000:18:00.0,peer=0000:1b:00.0;

5.1.4. Running execution

Before running real task, DPDK release packet should be saved under dep folder.
Make sure that files will be extracted to folder name same as default output directory (dpdk).

cp dpdk.tar.gz dep/
./dts

5.2. Performance Test Tutorial

Turtorial of performance test.

5.2.1. Execution configuration

Like functional test, performance execution need configure CRB, target, NIC type and suites. Only difference is that performance option should be true in parameters setting.

[127.0.0.1]
crbs=127.0.0.1
drivername=igb_uio
test_suites=
 l2fwd
targets=
 x86_64-native-linuxapp-gcc
parameters=nic_type=cfg:perf=true

5.2.2. DUT&Tester configuration

DTS now support two kinds of packet generators. One is hardware packet generator IXIA, the other is dpdk based packet generator. Here is the sample for IXIA, IXIA’s hardware resource like ports will be managed by groups in DTS. User need to assign which group will be used, and therefore IXIA ports in the group will be extended to tester’s ports list.

cat ./conf/crbs.cfg
[127.0.0.1]
dut_ip=127.0.0.1
dut_user=root
dut_passwd=xxx
os=linux
tester_ip=192.168.1.1
tester_passwd=xxx
ixia_group=IXIA
channels=4
bypass_core0=True

cat ./conf/ixia.cfg
[IXIA]
ixia_version=6.62
ixia_ip=xxx.xxx.xxx.xxx
ixia_ports=
 card=1,port=1;
 card=1,port=2;
ixia_force100g=disable

When there’s none IXIA group configured in CRB’s cfg file, DTS will try to use dpdk based packet generator for alternative. Apparently dpdk based packet generator can’t meet all the requirements like latency,RFC2544 and random packets. The statistics reported by dpdk pktgen were just for reference.

Dpdk based packet generator will request for dpdk running environment. So that user should prepare required kernel module igb_uio.ko under tester’s root directory. Due to packet generator can’t support one-time build and run on all platforms, user should also prepare pktgen binary under tester’s root directory. By now supported combination is dpdk v18.02 + dpdk-pktgen v3.5.0. Download link: http://dpdk.org/browse/apps/pktgen-dpdk/

cat ./conf/crbs.cfg
...
ixia_group=None
...

5.2.3. Network topology configuration

By default network topology of IXIA ports can be detected automatically. DTS also support manually configure network topo.

cat ./conf/ports.cfg
[127.0.0.1]
ports =
 pci=0000:18:00.0,peer=IXIA:1.1;
 pci=0000:18:00.1,peer=IXIA:1.2;

5.2.4. Running execution

Same as functional test.

6. Virtualization Framework

6.1. Design Concept

DTS virtualization framework is based on extendible design which can support different types of hypervisors and their parameters.

Suite for virtual feature should handle virtual machine creation and destruction. It only need to execute some most basic operations on guest like start, stop. There’re two ways to configure virtual machine. One is configuration file, the other one is to call hypervisor internal API. Suite can choose anyway of them based on its implementation.

Note

If VM configurations are different between test cases, those configurations shared with all cases should be defined in suite local configuration file. Those dynamical configurations should be set by hypervisor module’s API.

Virtual machine DUT class is inherited from host DUT class. This mean that for vm DUT, can call the same API as DUT object.

6.1.1. Flow Chart

Below picture show the virtualization related modules working flow.

[image: _images/virt_flow.svg]

6.2. System Requirements

6.2.1. Host Preparation

Kernel should enable KVM. In bios feature Intel(R) Virtualization Technology should be enabled. Emulator qemu must be installed in host.

Note

Some features like virtio cuse request higher version than default qemu release with linux distribution. For those features, qemu should be updated to version later than 2.1.

6.2.2. Guest Preparation

6.2.2.1. SSH connection

DTS create ssh connection to guest based on redirect guest ssh port to host port. Ssh connection will require one interface in guest which can connect to host. User should setup one default interface (e1000) in guest and make sure it can be up after guest boot up.

Note

Qemu process contained with one virtual DHCP server on 10.0.2.2 and will be allocated an address starting from 10.0.2.15. For more information about qemu network, please reference to https://en.wikibooks.org/wiki/QEMU/Networking.

In qemu module, the default e1000 device’s pci address is assigned to 00:1f.0 which is the very end of guest pci address. In guest, we configure udev rule and assign the default interface named as “host_connect”.

Add udev rule for default e1000 device:

vim /etc/udev/rules.d/70-persistent-net.rules
KERNELS=="0000:00:1f.0",SUBSYSTEMS=="pci", ACTION=="add", DRIVERS=="?*" ,KERNEL=="eth*", NAME="host_connect"

Enable dhcp on default host_connect interface.

vim /etc/sysconfig/network-scripts/ifcfg-host_connect
 TYPE="Ethernet"
 BOOTPROTO="dhcp"
 DEFROUTE="yes"
 DEVICE="host_connect"
 NAME="host_connect"
 ONBOOT="yes"
 PEERDNS="yes"
 PEERROUTES="yes"
 IPV6_PEERDNS="yes"
 IPV6_PEERROUTES="yes"

chkconfig --level 2345 network on

For network access, should disable guest firewall service.

systemctl disable firewalld.service

6.2.2.2. QGA connection

Install qemu guest agent, DTS will manage virtual machine through QGA if control type is ‘qga’.

yum install qemu-guest-agent.x86_64

6.2.2.3. Console connection

Enable virtual machine serial console in kernel command line, DTS will manage virtual machine through serial port if control type is ‘telnet’ or ‘socket’.

console=ttyS0,115200

6.3. Suite Programing

6.3.1. Add Configuration File

Configuration file should be placed in conf/{suite_name}.cfg and in test suite this file will be loaded for VM configurations. Below is one sample for virtualization suite configuration file.

The section name between [] is the VM name. Here we changed default cpu, mem, disk, UEFI configurations. And add two local configurations login and vnc into configuration file.
For cpu parameter, we changed core number to 2 and pin these two cores to socket 1 cores for performance concern. For mem parameter, we changed guest using with hugepage backend memory. It also concerned about performance. For disk parameter, we should change it local disk image absolute path.
For pflash parameter, we changed UEFI CODE and UEFI VARs file, which you specified when you created the VM.

Login parameter should be added when guest login username and password not same as host. VNC parameter should be added when need debug guest with vnc display.

vm configuration for vhost sample case
[vm0]
cpu =
 model=host,number=2,cpupin=24 25;
mem =
 size=4096,hugepage=yes;
disk =
 file=/home/img/vm0.img,opt_format=raw,opt_if=virtio,opt_index=0,opt_media=disk;
pflash =
 file=/home/img/flash_code.img;
 file=/home/img/flash_vars.img;
login =
 user=root,password=tester;
vnc =
 displayNum=1;

6.3.2. Add Parameters

Below is the brief view of the qemu parameters of vxlan sample virtual machine. These parameters are gathered into one list of python dictionary.

[{'name': [{'name': 'vm0'}]},
{'enable_kvm': [{'enable': 'yes'}]},
{'control': [{'type': 'telnet'}]},
{'daemon': [{'enable': 'yes'}]},
{'monitor': [{'path': '/tmp/vm0_monitor.sock'}]},
{'net': [{'opt_addr': '1f', 'type': 'nic', 'opt_vlan': '0'}, {'type': 'user', 'opt_vlan': '0'}]},
{'device': [{'opt_mac': '00:00:20:00:00:20', 'opt_path': './vhost-net', 'driver': 'vhost-user'}, {'opt_mac': '00:00:20:00:00:21', 'opt_path': './vhost-net', 'driver': 'vhost-user'}]},
{'cpu': [{'model': 'host', 'number': '4', 'cpupin': '24 25 26 27'}]},
{'mem': [{'hugepage': 'yes', 'size': '4096'}]},
{'disk': [{'file': '/storage/vm-image/vm0.img', 'opt_format': 'raw', 'opt_if': 'virtio', 'opt_index': '0', 'opt_media': 'disk'}]},
{'pflash': [{'file': '/storage/vm-image/flash_code.img'}]},
{'pflash': [{'file': '/storage/vm-image/flash_vars.img'}]},
{'login': [{'password': 'tester', 'user': 'root'}]},
{'vnc': [{'displayNum': '1'}]}]

In vxlan sample suite, we need to support socket based vhost-user network devices. Qemu command for vhost-user device will like as below.

-chardev socket,path=/path/to/socket,id=chr0 \
-netdev type=vhost-user,id=net0,chardev=chr0 \
-device virtio-net-pci,netdev=net0,mac=00:00:20:00:00:20

For user configuration, we should only care about socket path and mac address. Configuration of vhost-user device should like below.

device =
 driver=vhost-user,opt_path=./vhost-net,opt_mac=00:00:20:00:00:20
 driver=vhost-user,opt_path=./vhost-net,opt_mac=00:00:20:00:00:21

Python code should like below, vxlan_sample suite chosen this way.

vm_params = {}
vm_params['driver'] = 'vhost-user'
vm_params['opt_path'] = './vhost-net'
vm_params['opt_mac'] = "00:00:20:00:00:20"
self.vm.set_vm_device(**vm_params)
vm_params['opt_mac'] = "00:00:20:00:00:21"
self.vm.set_vm_device(**vm_params)

If parameter is device, function add_vm_{device} will be called and device options will passed as arguments. The options will be formatted into python dictionary.

{'opt_mac': '00:00:20:00:00:20', 'opt_path': './vhost-net', 'driver': 'vhost-user'}

def add_vm_device(self, **options):
 if options['driver'] == 'vhost-user':
 self.__add_vm_virtio_user_pci(**options)

In internal add virtio user device function, qemu module will generate chardev, netdev and virtio-net-pci command line in sequence.

def __add_vm_virtio_user_pci(self, **options):
if 'opt_path' in options.keys() and options['opt_path']:
 # add socket char device command line
 dev_boot_line = '-chardev socket'
 char_id = 'char%d' % self.char_idx
 dev_boot_line += separator + 'id=%s' % char_id + separator + 'path=%s' % options['opt_path']
 self.char_idx += 1
 self.__add_boot_line(dev_boot_line)

 # add netdev command line
 netdev_id = 'netdev%d' % self.netdev_idx
 self.netdev_idx += 1
 dev_boot_line = '-netdev type=vhost-user,id=%s,chardev=%s,vhostforce' % (netdev_id, char_id)
 self.__add_boot_line(dev_boot_line)

 # add virtio-net-pci command line
 opts = {'opt_netdev': '%s' % netdev_id}
 if 'opt_mac' in options.keys() and \
 options['opt_mac']:
 opts['opt_mac'] = options['opt_mac']
 self.__add_vm_virtio_net_pci(**opts)

6.3.3. VM Management

Suite should have known that which hypervisor type based on. With virtual machine instance, suite can start, stop and check status of the guest. All infrastructures required have been made up by virtualization module, suite should not handle that.

Note

Test case should focus in feature validation. VM management related codes recommended to be placed in set_up_all or set_up functions.

In vxlan sample suite, all test cases request to restart virtual machine. The backend application will be started with different parameters. So VM start up code is placed in set_up function.

def set_up(self):
 """
 Run before each test case.
 """
 tep_cmd = tep_cmd_temp % {
 'COREMASK': self.coremask,
 'CHANNELS': self.dut.get_memory_channels(),
 'VXLAN_PORT': self.vxlan_port, 'NB_DEVS': vm_num * 2,
 'FILTERS': self.OUTER_INNER_VNI, 'TX_CHKS': chksum,
 'ENCAP': encap, 'DECAP': decap}
 self.prepare_vxlan_sample_env(tep_cmd)

Before VM operations, vxlan sample feature request to start tep_termination application first. To initialized hypervisor kvm instance, there’re three parameters required. The first is DUT object, the second is VM name and the third is suite name.

def prepare_vxlan_sample_env(self, tep_cmd):
 # remove unexpected socket
 self.dut.send_expect("rm -rf vhost-net", "# ")

 # start tep_termination first
 self.dut.send_expect(tep_cmd, "VHOST_CONFIG: bind to vhost-net")

 # start one vm
 self.vm = QEMUKvm(self.dut, 'vm0', 'vxlan_sample')

Before VM start up, suite still can change VM parameters and in this case suite will add two vhost-user devices.

add two virtio user netdevices
vm_params = {}
vm_params['driver'] = 'vhost-user'
vm_params['opt_path'] = './vhost-net'
vm_params['opt_mac'] = "00:00:20:00:00:20"
self.vm.set_vm_device(**vm_params)
vm_params['opt_mac'] = "00:00:20:00:00:21"
self.vm.set_vm_device(**vm_params)

Add exception handler in VM start, it is critical function and better to handle the exception.

try:
 self.vm_dut = self.vm.start()
 if self.vm_dut is None:
 raise Exception("Set up VM ENV failed!")
except Exception as e:
 print dts.RED("Failure for %s" % str(e))

 return True

VM start function will just return VM DUT object and support all DUT APIs.

def vm_testpmd_start(self, vm_id=0):
 """
 Start testpmd in virtual machine
 """
 if vm_id == 0 and self.vm_dut is not None:
 # start testpmd
 self.vm_dut.send_expect(self.vm_testpmd, "testpmd>", 20)
 # set fwd mac
 self.vm_dut.send_expect("set fwd io", "testpmd>")
 # start tx_first
 self.vm_dut.send_expect("start tx_first", "testpmd>")

When case has been run, need kill guest dpdk application and stop VM.

def clear_vxlan_sample_env(self):
 if self.vm_dut:
 self.vm_dut.kill_all()
 time.sleep(1)

 if self.vm:
 self.vm.stop()
 self.vm = None

6.4. KVM Module

6.4.1. Default Parameters

6.4.1.1. Enable KVM

DTS enable KVM full virtualization support as default. This option will significant improve the speed of virtual machine.

6.4.1.2. Control (Qemu Guest Agent)

Qemu monitor supply one method to interact with qemu process. DTS can monitor guest status by command supplied by qemu guest agent. Qemu guest agent is based on virtio-serial devices.

-device virtio-serial -device virtserialport,chardev=vm_qga0,name=org.qemu.guest_agent.0
-daemonize -monitor unix:/tmp/vm_monitor.sock,server,nowait

Check whether guest os has been started up.

qemu-ga-client address=/tmp/{vm_name}_qga0.sock ping 120

Note

We only wait two minutes for guest os start up. For guest os only has few hardware and we has disabled most services, so 2 minutes is enough.
This command will be return when guest os is ready, so DTS will not wait 2 minutes for each time.

Check whether guest os default interface has been up.

qemu-ga-client address=/tmp/{vm_name}_qga0.sock ifconfig

DTS will wait for guest os default interface upped and get auto dhcp address. After that DTS can connect to guest by ssh connections.

lo:
 inet 127.0.0.1 netmask 255.0.0.0
 inet6 ::1 prefixlen 128
host_connect:
 inet 10.0.2.15 netmask 255.255.255.0
 inet6 fe80::200:ff:feb9:fed7 prefixlen 64
 ether 00:00:00:b9:fe:d7

Power down guest os.

qemu-ga-client address=/tmp/{vm_name}_qga0.sock powerdown

Note

For more information about qemu guest agent, please refer to https://wiki.qemu.org/Features/GuestAgent.

6.4.1.3. Control (Qemu Serial Port)

Qemu serial port is the default method to interact with guest OS. DTS can monitor guest status/manage guest network by serial port.

-serial telnet::7000,server,nowait

DTS will check the output from serial port and determine whether guest os has been started up. The prompt string for guest login session can be configured by parameter “start”.

start =
 wait_seconds=120,login_timeout=60,login_prompt=login:,password_prompt=Password:;

Note

Default timeout for guest OS start up is 2 minutes. For guest os only has few hardware and we has disabled most services, so 2 minutes is enough. If guest OS can’t start up in 2 minutes, DTS will try to restart it once.

DTS will check default interface upped and utilize dhcp to retrieve address. After that DTS can connect to guest by ssh connections.

lo:
 inet 127.0.0.1 netmask 255.0.0.0
 inet6 ::1 prefixlen 128
host_connect:
 inet 10.0.2.15 netmask 255.255.255.0
 inet6 fe80::200:ff:feb9:fed7 prefixlen 64
 ether 00:00:00:b9:fe:d7

Power down guest os by serial port.

init 0

Note

For more information about qemu serial port, please reference to https://qemu.weilnetz.de/doc/qemu-doc.html.

6.4.1.4. Qemu Monitor

After guest started, there’s no way to known that host pci devices assigned-into guest.
When assign host pci device into guest, we also add “id” string for this device.

-device pci-assign,host=07:10.0,id=pt_0

With this command, we assign host VF device 07:10.0 into guest and it is named as “pt_0”. “pt_0” means it’s the first device pass through into guest os.
After guest os started, we use the QEMU/Monitor “info pci” command to dump PCI information and generate guest and host pci mapping by “id”.

Bus 0, device 4, function 0:
 Ethernet controller: PCI device 8086:10ed
 BAR0: 64 bit memory at 0xfebb0000 [0xfebb3fff].
 BAR3: 64 bit memory at 0xfebb4000 [0xfebb7fff].
 id "pt_0"
Bus 0, device 5, function 0:
 Ethernet controller: PCI device 8086:10ed
 BAR0: 64 bit memory at 0xfebb8000 [0xfebbbfff].
 BAR3: 64 bit memory at 0xfebbc000 [0xfebbffff].
 id "pt_1"

Connection to monitor socket on DUT.

nc -U /tmp/{vm_name}_monitor.sock

Note

For More detail information about qemu monitor. https://en.wikibooks.org/wiki/QEMU/Monitor#info

6.4.1.5. Qemu Machine (Aarch64)

DTS need set default qemu machine type as virt for Aarch64. This option is mandatory for qemu-system-aarch64.

6.4.2. Configured Parameters

6.4.2.1. Net

Net parameter is used to create one new Network Interface. There’re few types of network interface supported by net parameter.

	Type supported:

	nic: Network Interface Card
user: connect the user mode network stack
tap: connect the host TAP network interface
bridge: connects a host TAP network interface to a host bridge device

Each type has different options, detail information shown in below tables.

Options for nic:

	Option of nic

	Description

	Default value

	Must have

	opt_vlan

	vlan of virtual nic

	0

	No

	opt_macaddr

	If not assign, nic will generate
random mac

	N/A

	No

	opt_model

	model of virtual nic

	e1000

	No

	opt_name

	name be assigned for use in
monitor command

	N/A

	No

	opt_addr

	pci address in virtual machine

	N/A

	No

	opt_vectors

	number v of MSI-X vectors

	N/A

	No

Options for user:

	Option of user

	Description

	Default value

	Must have

	opt_vlan

	vlan of virtual nic

	0

	No

	opt_hostfwd

	Redirect incoming TCP or UDP
connections to the host port

	N/A

	No

Options for tap:

	Option of tap

	Description

	Default value

	Must have

	opt_vlan

	vlan of virtual nic

	0

	No

	opt_br

	bridge which tap device bound to

	br0

	Yes

	opt_script

	script for tap device network
configure

	/etc/qemu-ifup

	No

	opt_downscript

	script for tap device network
deconfigure

	/etc/
qemu-ifdown

	No

6.4.2.2. Device

Device parameter is used to add one emulated device into guest. Now DTS support few types of driver based devices.

	Driver supported:

	pci-assign: pci passthrough host devices into vm
virtio-net-pci: virtio devices
vhost-user: vhost-user network device based on socket
vhost-cuse: vhost-user network device based on tap

Options for pci-assign:

	Options of
pci-assign

	Description

	Default value

	Must have

	opt_host

	host pci device address

	N/A

	Yes

	opt_addr

	pci address in virtual machine

	N/A

	No

Options for virtio-net-pci:

	Option of
virtio-net-pci

	Description

	Default value

	Must have

	opt_netdev

	name for virtio netdev

	N/A

	Yes

	opt_id

	netdevice id for virtio

	N/A

	Yes

	opt_mac

	mac address on virtio-net device

	N/A

	No

	opt_bus

	pci bus of virtio-net device in
vm

	N/A

	No

	opt_addr

	pci address of virtio-net-pci
device in vm

	N/A

	Yes

Options for vhost-user:

	Option of
vhost-user

	Description

	Default value

	Must have

	opt_path

	unix socket path of character
device

	N/A

	Yes

	opt_mac

	mac address on virtio-net-pci
device

	N/A

	Yes

Options for vhost-cuse:

	Option of
vhost-cuse

	Description

	Default value

	Must have

	opt_mac

	mac address on virtio-net-pci
device

	N/A

	No

	opt_settings

	virtio device settings

	N/A

	No

6.4.2.3. VNC

Vnc parameter is used for add vnc display in qemu process. There’s only one option “displayNum” supported by this parameter. This parameter is added for user debug.

Note

Display number should be different between virtual machines.

6.4.2.4. User Command

User command parameter is used for add one special command for qemu. Some qemu command lines are so unique, there’s no value to add certain parameter support for them. Those command lines can be implemented by this parameter.

6.4.2.5. Login

Login parameter is used for specify guest login username and password.

7. Virtualization Scenario

When enable virtualization scenario setting in execution cfg, DTS will load scenario configurations and prepare resource and devices for VMs. After VMs started, scenario module will prepare test suite running environment. After all suites finished, scenario module will stop VMs and then clean up the scene.

7.1. Configuration File

With below configuration, DTS will create one scenario which created one VM with two VF devices attached. In scene section and according to configurations defined in suite. DUT object in suite will be VM DUT object, tester and DUT port network topology will be discovered automatically. Now DTS only support kvm typed hypervisor to create virtualization scenario.

vm configuration for vf passthrough cases
numa 0,1,yes yes mean cpu numa match the first port
skipcores list mean those core will not be used by vm
dut=vm_dut; mean vm_dut act as dut
dut=dut; mean host dut act as dut
portmap=cfg; mean vm_dut port map will be load from cfg
portmap=auto; mean vm_dut will create portmap automatically
devices = dev_gen/host/dev_gen+host not useful now
[scene]
suite =
 dut=vm_dut,portmap=auto;
 tester=tester;
type=kvm;

Virtual machine “vm0” section configured cpu, memory, disk and device settings in VM. As below configurations, VM will not use the first four lcores on DUT. DTS will generate two VF devices from first two host PF devices. These two VF devices will be pass-through into guest and their pci address will be auto assigned by qemu.

[vm0]
cpu =
 model=host,number=4,numa=auto,skipcores=0 1 2 3;
mem =
 size=2048,hugepage=no;
disk =
 file=/storage/vm-image/vm0.img;
dev_gen =
 pf_idx=0,vf_num=1,driver=default;
 pf_idx=1,vf_num=1,driver=default;
device =
 vf_idx=0,pf_dev=0,guestpci=auto;
 vf_idx=0,pf_dev=1,guestpci=auto;
vnc =
displayNum=1;

All suites will be run in scenario like below picture.

[image: _images/scene_pf_passthrough.svg]

7.2. Scenario Parameters

Options for suite:

	option

	Description

	Options

	Default value

	Must have

	dut

	type of dut for dts suite

	vm_dut,dut

	dut

	No

	dut->portmap

	method to generate dut port maps

	auto, cfg

	auto

	No

	tester

	type of tester for dts suite[Not
used by now]

	N/A

	N/A

	No

	type

	type of hypervisor

	kvm,libvirtd

	kvm

	No

Options for cpu:

	option

	Description

	Options

	Default value

	Must have

	model

	type of dut for dts suite

	
	host

	Yes

	number

	number of cores in virtual
machine

	
	4

	Yes

	numa_aware

	numa id of cores allocated from
resource module

	0,1,auto

	0

	Yes

	skipcores

	cores should not be used, most
time for those cores will be used
by dpdk on host

	
	
	No

Options for mem:

	option

	Description

	Options

	Default value

	Must have

	size

	virtual machine memory size in
MBs

	
	2048

	Yes

	hugepage

	whether allocate memory from
hugepages

	
	No

	No

Options for dev_gen:

	option

	Description

	Options

	Default value

	Must have

	pf_idx

	PF device index of host port

	
	0

	Yes

	pf_inx->vf_num

	number of VFs created by this PF
device

	
	0

	Yes

	pf_inx->driver

	Allocate VF devices from which PF
host driver

	igb_uio,default
vfio-pci

	default

	Yes

Options for device:

	option

	Description

	Options

	Default value

	Must have

	pf_idx

	PF device index of host port

	
	0

	Yes

	pf_idx->guestpci

	pci address in virtual machine

	
	
	No

	vf_idx

	VF devices index of all VFs
belong to same PF devices

	
	
	No

	vf_idx->pf_dev

	PF device index of this VF device

	
	
	Yes

	vf_idx->guestpci

	pci address in virtual machine

	
	
	No

Options for ports:

	option

	Description

	Options

	Default value

	Must have

	dev_idx

	device index of virtual machine
ports

	
	
	No

	dev_idx->peer

	tester peer port’s pci address

	
	
	No

8. Multiple Virtual Machines Management

When managing multiple virtual machines, waiting around 2 minutes for each VM will be exhausted. So DTS imported parallel threads model into multiple VMs management scenario.

Note

Critical resources and actions which can’t be handled in parallel have been protected by function level lock.

8.1. Command arguments

Multiple VMs module support start VMs or send commands to VMs in parallel with specified arguments format.

Arguments for “start” command:

	name

	Description

	Default value

	Must have

	name

	virtual machine name

	N/A

	Yes

	dut_id

	index of DUT

	0

	No

	autodetect_topo

	whether detect network topology
automatically

	False

	No

	virt_config

	virtual machine config location

	N/A

	Alternative

	virt_params

	local parameters of virtual
machine

	N/A

	Alternative

Arguments for “cmd” command:

	name

	Description

	Default value

	Must have

	name

	virtual machine name

	N/A

	Yes

	dut_id

	index of DUT

	0

	No

	commands

	list of commands which will be
sent into the vitual machine

	N/A

	Yes

	expects

	list of expect output of the
commands

	N/A

	Yes

	timeouts

	list of timeout value of the
commands

	N/A

	Yes

Note

If there’s nothing expected for the command, still need to define expected string as blank

Multiple module will catagorize and save the result value after all tasks have been done. Later users can retrieve the result by function get_parallel_result.

8.2. Sample Code

vm_task = MultipleVM(max_vm=self.VM_NUM, duts=self.duts)

for dut_id in range(len(self.duts)):
 for vm_idx in range(VM_NUM):
 vm_name = "vm%d" % vm_idx
 args = {'name': vm_name,
 'dut_id': dut_id,
 'autodetect_topo': False,
 'virt_params': {
 'qemu': [{'path': '/usr/local/bin/qemu-system-x86_64'}],
 'cpu': [{'model': 'host', 'number': '1', 'cpupin': ''}],
 'mem': [{'size': '1024', 'hugepage': 'yes'}],
 'disk': [{'file': '/storage/vm-image/%s.qcow2' % vm_name}],
 'login': [{'user': 'root', 'password': 'root'}],
 'device': None}
 }

 vm_task.add_parallel_task(action="start", config=args)

vm_task.do_parallel_task()
print vm_task.get_parallel_result()

Index

 _images/dts_soft_arch.png
‘ Test Plans (rst) ’ ‘ Test Scripts ’ ‘ Configure Files ’

Configure Manager

Test Components ;

TESTER DUT | Exception Manager
Reporter Test Case I SSH Connection
Log Debug | CRB Management

PacketGen
Test Framework

Virtualization

_images/dts_network_arch.png
Fedora/Ubutun/Redhat/FreeBSD \
CRB |:|!

- P
j{ \

e —

_images/dts_result.png
10239.128.417 x86_64-native-finuxapp-gee niantic

PASSED
PASSED

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Getting Started Guide

 		
 Introduction

 		
 System Requirements

 		
 Setup Tester Environment

 		
 SSH Service

 		
 TCL Language Support modules

 		
 Install Third Party python modules

 		
 Setup and configure Scapy

 		
 Install DPDK Test Suite on tester

 		
 Setup Target Environment

 		
 BIOS setting Prerequisite

 		
 DPDK running Prerequisite

 		
 Authorized login session

 		
 Configuring DPDK Test Suite

 		
 DPDK Test Suite command line

 		
 DPDK Release Preparation

 		
 Create your own execution configuration

 		
 Launch DPDK Test Suite

 		
 Review Test Result

 		
 Browse the result files

 		
 Check test result of DPDK Test Suite

 		
 Generate PDF doc from RST

 		
 Tutorial

 		
 Functional Test Tutorial

 		
 Execution configuration

 		
 DUT&Tester configuration

 		
 Network topology configuration

 		
 Running execution

 		
 Performance Test Tutorial

 		
 Execution configuration

 		
 DUT&Tester configuration

 		
 Network topology configuration

 		
 Running execution

 		
 Virtualization Framework

 		
 Design Concept

 		
 Flow Chart

 		
 System Requirements

 		
 Host Preparation

 		
 Guest Preparation

 		
 Suite Programing

 		
 Add Configuration File

 		
 Add Parameters

 		
 VM Management

 		
 KVM Module

 		
 Default Parameters

 		
 Configured Parameters

 		
 Virtualization Scenario

 		
 Configuration File

 		
 Scenario Parameters

 		
 Multiple Virtual Machines Management

 		
 Command arguments

 		
 Sample Code

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

